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mo-neighbour stochastic cellular automata and their 
planar lattice duals 

Makoto Katori and Hiroshi Tsukahara 
Depamnent of Physics, Faculty of Science and Engineering, Chuo University, Kasuga, Bunkyo- 
ku, Tokyo 112, Japan 

Received 28 March 1995 

Abstract. Two-neighbour stochastic cellular automata (sa) are the set of one-dimensional 
discrete-time interacting particle systems with two parameters, which show non-equilibrium 
phase transitions from the extinuion phase to the survival phase. The phase diagram was fim 
sNdied by Kinzel using a numerical method called uansfer-& scaling. For some parameter 
region the processes can be defined as directed percolation models on the rpatio-temporal plane 
and the bond- and site-directed percolation models are included as special cases. Extending 
the argument of Dhar, Banna and Phani originally given for bond-directed percolation, we 
introduce diode-resistor percnlarion models which are the planar lauice duals of the SCA and 
give rigorous lower bounds for the critical line. In special cases, our results give 0.6885 < rr, 
and 0.6261 < pc, where ot and denote the critical probabilities of Ihe site- and bonddirected 
percolation models on the squarelanice, respectively. Combining the upper bound for the critical 
l i e  recently proved by Liggen, we summarize the rigorous results for ,!he phase diagram of the 
systems. Results of computer simulation are also shown. 

1. Introduction 

Stochastic cellular automata (SCA) are interacting particle systems in discrete space and 
time, in which the evolution satisfies local stochastic rules. Since we expect that they 
provide simple mathematical models for systems which are far from thermal equilibrium 
(Dick”  1993), the stochastic rules are not assumed to be given by the local B o l t z ”  
weight nor to satisfy detailed balance. Kinzel (1985) introduced some elementary one- 
dimensional SCA which have absorbing states as trivial stationary states. Continuous phase 
transitions between the absorbing states and the nctive stationary states are observed even 
in onedimensional SCA, in contrast to systems satisfying detailed balance. Kinzel studied 
the phase diagrams a d  critical phenomena using transfer-matrix scaling. 

In the present paper, we revisit a set of the SCA of Kinzel, the two-state SCA with two 
neighbours, and give some rigorous results for the phase diagrams. Each site x on a o n e  
dimensional integer lauice takes one of two states, 0 (vacancy) and 1 (particle), and the value 
of site x at time t + 1, which we write as ql+l ( x ) ,  is determined to satisfy the following 
stochastic rules. The probability for qt+l(x) = 1 is Fro  if qr(x - 1) = q,(x + 1) = 0 
(no particle in the neighbourhood), p1 if ql(x - 1) = 1, ql (x  + 1) = 0 or ql(x - 1) = 
0, ql(x + 1) = 1 (one particle in the neighbourhood), and pz if qt(x - 1) = ql(x + 1) = 1 
(two particles in the neighbourhood). If we regard the state q l ( x )  = 1 (resp. q&) = 0) 
as representing an infected (resp. a healthy) individual at x ,  this SCA can be considered 
as a simple model of the spread of infection of a disease, whose continuous-time version 
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is known as the contact process (Harris 1974, Liggett 1985). If p ,  and pz are small, the 
disease becomes extinct with probability one (extincrion phase), while if p1 and pz are 
sufficiently large, there is a positive probability for which the infection process will survive 
for all time (survival phose). 

One-dimensional sCA can be defined as two-dimensional statistical models on the spatio- 
temporal plane. Durrett (1988) called the above SCA of Kinzel two-neighbour systems and 
showed that they are constructed as generalized directed percolation models on the spatio- 
temporal plane when the parameters satisfy the relation 

M Kafori and H Tsukahara 

P1 Q PZ Q 2 P l .  (1.1) 

From this point of view, the survival phase and the extinction phase are identified with 
the percolation phase and the non-percolation phase, respectively. We have a critical line 
between these two phases on the ( p l .  pz)-phase diagram. It should be noted that the two- 
neighbour SCA with (1.1) includes bond- and sitedirected percolation as special cases. The 
intersection of the critical line and the line pz = p1 (resp. the line pz = p , ( 2  - p l ) )  gives 
the critical probability a, (resp. pc) of the site (resp. bond) directed percolation. 

Recently Liggett (1994) proved the upper bound of the critical line for the systems in 
the parameter region f < PI < p z  Q 1. As a special case, his bound gives the best upper 
bound for a: pc Q 1. For the site model, his results give ac < $, which is slightly larger 
than the best upper bound 0.7491 given by Balister et a1 (1994). On the other hand, Dhar 
(1982) invented a series of strategies which improve lower bounds for the bond-directed 
percolation successively. His second strategy gives 0.6261 < pc and the third one gives the 
best lower bound, 0.6298 Q pc. These lower bounds are excellent, since the most reliable 
value known so far is pc = 0.644701 rt0.000 001 estimated by Baxter and Guttmann (1988). 
The difference is less than 3%. However, corresponding good lower bounds have not yet 
been given for the site-directed percolation and other cases. 

In this paper we show that Dhar’s method can be extended for the two-neighbour SCA 
if the condition (1.1) is satisfied, and give lower bounds for the critical line. Our best 
bound is reduced to the result given by the second stlategy of Dhar, for the bond-directed 
percolation limit. For the site case, our result gives 0.6885 Q cyc. ~ The difference from 
the value estimated by Onody and Neves (1992), cyc = 0.705489 ~~0.000004, is only 
2.4%. Combining Liggett’s upper bound and o m ,  we present figures which summarize the 
rigorous bounds for the critical line, and discuss the phase diagram of the two-neighbour 
SCA. Dhar’s method is based on the observation by Dhar et al  (1981) that bond-directed 
percolation is the planar lattice dual of the dioderesistor percolation model. Dhar er a1 
(1981) introduced an angle @ which characterizes the asymptotic behaviour of the spread of 
the diode-resistor percolation region. However, the definition of this angle is not entirely 
clear in their short paper. Therefore we examine their argument carefully, comparing it with 
Durrett’s approach for the edge process (Durrett 1984), and give a precise definition for 
@. The argument presented in this paper is necessary for giving mathematical justification 
to Dhar’s method. Another verification of the Dhar-Banna-Phani argument was given 
by Wierman (1983). Though both proofs use the same mathematical technique and the 
subadditive ergodic theorem, consfsuction is different from each other (see remark 3.3). 

The paper is organized as follows. In section 2 we define the two-neighbour SCA based 
on the percolation substructure and briefly explain time-reversal duality, which gives a useful 
characterization of the critical values. Section 3 is devoted to reformulating the planar lattice 
duality first observed by Dhar ef al(1981). Dhar’s method for the lower bounds is extended 
in section 4 and the phase diagram of the system is discussed in section 5. Details of the 
calculation are found in the appendix. Numerical data obtained by computer simulation are 



Two-neighbour s a  and planar lartice duals 3937 

also shown in section 5. At the end of section 5 some remarks on future problems are given. 

2. Two-neighbour stochastic cellular automata and time-reversal duality 

2.1. The process 

We consider the set of discrete time processes q, on a spatio-temporal plane 

v = { (x .  t )  E z2 : x + t = even, t = 0.1.2, . . .) . (2.1) 

They are the two-valued stochastic cellular automata (discrete-time interacting particle 
systems); each site x takes one of the two states 0 (vacant) and 1 (occupied by a 
particle). The state at time f is thus given as a set qI of sites occupied by particles. 
Let Z. = (. .., -4, -2,0,2,4,. . .) and Z, = {. . . , -3, -1, 1,3, .. .}. Then q, c Z, for 
f = even and q, c 2, for f = odd. The time evolution is given by 

P ( X  E v,+~I qr ) = mr n (x - 1.x + 1~ (2.2) 

where IAl denotes the number of sites included i n ~ a  set A. That is, it is a Markov process 
and the state of the site x at time t + 1 depends only on the states of its two neighbouring 
sites at time f .  

Kinzel (1985) introduced the set of two-neighbour systems which is parameterized by 
pi and p z  as 

f (0) = 0 f ( 1 )  = PI f (2)  = PZ (2.3) 

with 0 Q p1 Q 1,O < pz < 1. Figure 1 shows the elementary processes. 
As explained clearly in section 5b of Durrett (1988). the processes can be identified 

with directed percolation models on the spatio-temporal plane V. At each triangle of three 
points (x - 1, t ) ,  (x  + 1, t )  and ( x ,  t + 1). we place the following ‘gadgets’ independently. 
W O  arrows with probability p ,  one mow with probability q (the left and right ones, 
respectively) and nothiig with probability 1 - p - Zq (see figure 2). The mow from 
(x - 1, t )  to ( x ,  t + 1) or that from (X + 1, t )  to (x, t + 1) denotes that the directed bond 
is open. We say ‘there is an open path from (x, t )  to ( y ,  f + n) (n > 1)’ if there is a 
sequence (xo, t )  = ( x ,  t ) ,  ( X I ,  t + l), . . . , ( x u ,  t + n )  = (y. t + n) of points in V such that 
for each 0 < i 4 n - 1 the bond from (xi,  t + i)  to (xi+]. t + i + 1) is open, and write 
( x ,  t )  -+ ( y ,  t + n) for short. If we define a process by setting 

‘7: = IY : (x. 0) - (Y 9 01 (2.4) 

Figure 1. The elementary processes of the WO- t neighbour SCA. ?he full (resp. open) circles 

Rob. 0 4 4 p2 . . . . 
0 0 .  0 0  0 .  . 

time denafe pafiicles (resp. vacancies). 

Rob. P 4 4 hQ4 

(x. t+ 1) 
Figure 2. The gadges for consmcting the 

0 .  i% 3 0 0 \ 0 0 two-neighbour SCA 9, on the spatia-temporal 
(x-1,O (rC1.f) plane V. 
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and 

17: = U f 
I E A  

(2.5) 

then the resulting system is nothing but the process (2.2) with (2.3) starting from the state 
A with 

p i = p + q  and p z = p + 2 q .  (2.6) 
Since we must have 0 6 p < 1,0 < q < 1 and 0 < 1 - p  -2q < 1, the above identification 
with the directed percolation is possible if and only if 

Since we will use the above percolation substructure throughout this paper, we assume (2.7) 
from now on. 

2.2. Special cases 

It is easy to confirm that the above set of processes includes the well known percolation 
models as special cases if the parameters are chosen as follows. 

Site-directed percolation with site concentration (Y 

PI = a  p2=(Y.  (2.8) 

p1 = B  a = 8 ( 2 - B ) .  (2.9) 

Pl  =crB P z = ~ j 3 ( 2 - B ) -  (2.10) 

Bond-directed percolation with bond concentration 

Mixed site-bond directedpercolation with the site (resp. bond) concentration (Y (resp. p )  

2.3. Critical line 

Since the spontaneous creation of particles is forbidden, the empty state q, = 0 is absorbing. 
When p2 2 p l ,  the population at time t is a non-decreasing h c t i o n  of the population at 
time zero. This property is called uttradveness and it follows that the process starting 
from the state with all sites occupied by particles, #, will have the highest probability for 
survival. If limr+m P(qF # 0) = 0, then any process will become extinct with probability 
one. On the other hand, in some parameter region in (2.7) we have P(# # 0 for all 
f 2 0)’ > 0. It is verified for p2 2 pl that this probability is a monotonically non- 
decreasing function of p1 and p2. Then the two-parameter space (2.7) will be divided into 
two regions; the region where tiit+, P($ + 0) = 0 and the region where. P(# + 0 
for all t 2 0) 0. We will call the former the extinction phuse and the latter the survival 
phase. The boundary between these two phases will be called the critical line, since critical 
phenomena are observed on this line. 

2.4. Time-reversal dual process 

It is difficult to estimate the probability P ( q 2  # 0 for all t 2 0). since it is defined for the 
process q?, whose particle number is infinite. As explained below, however, this quantity 
turns out to be equal to the probability for a process in which the number of particles 
remains finite if t < 03. 
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Rob. P 4 4 1-P% 

Figure 3. (0) The gadgets for consmcting 
the timeleversal dual process G,. They are 

a e obtained from the gadgets in figure 2 by 
(I, 1) ( a )  reversing the time dinciion. (b) For each 

gadget in (U), we assign a new gadget which 
consists of reSistors (double lines) andlor 
diodes (single lines). These gadgets are A A A A placed on miangles of three points on the 
lattice V* which is the planar dual of V .  

(x-l,rcl)(x+l, rcl) 
e .  

(x. $+U . 
a .  

(PLO (x+l, t)  ( b )  

In subsection 2.1, we showed that the process q, can be constructed as a union of 
percolation paths on the spatio-temporal plane V by using the gadgets shown in figure 2. 
In the same way, we can define another stochastic process by using the time-reversed 
gadgets shown in figure 3(a). This process e, is said to be a time-reversal dual process of 
q, and by definition we can conclude the following relation: 

(qf n B # 0} = [ A  n 6,” # 0} with probability one (2.11) 

for all sets A and B .  This relation is called the time-reversal duality relation (Durrett 1984) 
or specifically the coalescing duality relation to distinguish it from other kinds of time- 
reversal duality relations. For more details, see Durrett (1988) and Inui et pl. (1995). Let 
A = Z., B = IO) for f = even in (2.11). Then we have 

~ ( ( 0 )  E q,”.) = p(:jo’ p 0) for t = even. (2.12) 
Since the empty set 0 is a single absorbing state of the process fijo’, the RHS of (2.12) is 
decrea’sing in t and has the limit 

(2.13) P(P, q )  = lim p(ij0’ # 0) 
1-m 

which is a function of the parameters p .  q with 

o < q < ;  O < p < l - Z q .  (2.14) 

By the dudlity relation (2.12), we have 

p ( p ,  q )  > 0 tj survival phase 
p ( p ,  q )  = 0 e extinction phase 

This quantity p ( p ,  q )  is a non-decreasing function of p and q if (2.14) and the precise 
definition of the critical line on the (p, q)-plane is given as follows. 
For 0 < q < 4. 

(2.15) 

This line will be mapped to the critical line P I  = PI&) on the (PI, p+plane by the 
relation (2.6). 

3. Edge process and diode-resistor percolation 

3.1. Edge speed u ( p ,  q )  

Following the argument of Durrett (1984) for two-dimensional directed percolation, we can 
give another characterization of p&). Consider the right edge process I$-, whose initial 
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state is 2- = [. . . , -6, -4, -2,O) and define the right edge as 
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Intuitively speaking, the behaviour of this right edge r, for f + co will characterize pc(q).  
That is, if rr + co as t + co the process will survive, while if r, -+ --CO as t -+ co 
the process will die out. DmeU (1984) gave rigorous meaning for this observation. The 
simple extension of his theorem to the present generalized process GI will be given below. 

For 0 < q < 4.0 < p < 1 - 24, 
. TI lim - = a ( p ,  q)  exists almost surely 

r+m t (3.2) 

where a ( p . 4 )  = infr,oE[rIl/t. 
The quantity a ( p ,  q )  is the edge speed and characterizes the critical values as 

p d q )  = in fb  : W ( P .  4 )  > 01 
= S U P I P  : a ( p ,  4 )  < 01. (3.3) 

3.2. Dhar-Barm-Phani's characterization of edge processes 

Dhar et al(l981) proposed another characterization of the asymptotic behaviour of the edge 
processes. First we explain the basic idea of their argument using some figures. The precise 
description will be given in the next subsection. 

In figure 4(a) a typical realization of the edge process is shown. Dhar et al (1981) 
concentrated on the 'contour' of the right edge, which is indicated by a wavy line. We will 

F i e  4. (a) A typical realiration of the right edge process if-. The spatio-temporal region 
which is occupied by panicle is hatched. The wavy line indicates the 'contour' of the right 
edge. The angle between the contour and the line f = 0 is denoted by +. (b) The diad-resistor 
system on V' camponding to the " i o n  (a). where diodes (resp. resistors) are denoted 
by single (resp. double) lies. The orientation of diodes is in the direction X or Y. The shaded 
region is the wet region percolated from the point (1.0). 
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define the (asymptotic) angle @ between this contour and the line t = 0, which is just the 
half of the angle denoted by 0 and called the wedge angle in Dhar er aZ(l981). This angle 
@ E [n/4, R] and we observe that 

n R - 6 @ c - e survival 
4 2 

@ > - w extinction. 
2 

(3.4) 

It should be noticed that this contour of the edge is defined on bonds not in the lattice 

(3.5) 

In order to indicate the contour of edge process for bond-directed percolation, Dhar er al 
(1981) introduced the diode-resistor percolation model on the dual lattice V*. The similar 
procedure can also be done for the present process #- as follows. For each gadget of ijr 
in figure 3(a), we assign a new gadget as shown in figure 3(b). Here double lines represent 
resistors (two-way conducting bonds) and single lines represent diodes (one-way conducting 
bonds). Figure 4(b) shows the diode-resistor system on V" corresponding to the realization 
shown in figure 4(a). We assume that the orientation of diodes is in the direction ( 1 , l )  or 
( 1 ,  - 1 ) ;  current is allowed only in these directions through diodes. Then we put a source of 
fluid at the point ( 1 , O )  and consider the percolation problem on this diode-esistor system. 
The lattice V* will be divided into two regions; the wet region percolated from ( 1 ,  0) and 
the dry region. The boundary of the wet region behaves in a similar way to the contour of 
the original edge process. We give a precise definition for @ in the next subsection. 

n 

V but in its planar dual lattice 

V* = { ( x , t )  E Zz : x + t  =odd,t =0,1,2,  . . . I .  . 

3.3. Precise &$nition of the angle @ 

We consider the dioderesistor percolation model on V'. First we change the coordinates 
for convenience. We shift the coordinates so that ( 1 , O )  E V* becomes a new origin and 
rotate the axis by n / 4  and rescale the units. That is; ( x ,  r )  E V* H (X, Y )  E Zz as 

At each pair of bonds connecting (X, Y )  with ( X  + 1 ,  Y )  and with ( X ,  Y - 1 )  on this 
new plane, we place independently one of the four gadgets shown in figure 5 with the 
appropriate probability. The orientation of diodes is now pre-assigned to be in the direction 
of increasing X or Y coordinates. Since we have considered the region r > 0 in V', we 
will consider the half of Z2, 

U = {(X, Y )  EZZ : Y > X I .  (3.7) 

Figure 6(a) shows the contour of the edge process which was shown in figure 4 in this new 
coordinates. 

Pmb. P 4 4 1-P-3 

Figure 5. Four kbds of gadgets for the present 
dioderesistor system. At each pair of bonds on 
Z2. we place one of them independently with the 
appropriate probability. 
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We introduce the following notation for sets of bonds: 
vi = the set of vertical bonds in the column X = i, 
hi = the set of horizontal bonds between the columns X = i and X = i + 1 
and 

(3.8) 

(3.9) 

We will write the set of bonds which are the elements of Bi and both of whose edges are in 
U as Ei n U. In this diode-resistor percolation, if there is a path from (Xi,  Yi) to (X2, Yz) 
such that all the bonds consisting the path are included in a set C, then we write 

(XI, Yl) +(XZ, Y d .  (3.10) 

For each realization of the diode-resistor system, we can define the following points 
Pi = (4, Yd.  i = 0, 1,2, .  . . as 
Yo = 0 

Yi =min{Y: (-i,Y) E U and (0.0) &(-i,Y)} 

See figure 6(a), for example. If we let 

(3.11) for i =  1,2, .... 
B-,nu 

U ( i ) = { ( X , Y ) E Z 2 : Y - Y i ~ X + i )  for i=O,1,2 ,... (3.12) 
and define for 0 < j < i 
Yj.i =.min{Y : (4, Y )  E U ( j )  (3.13) 

then U(0)  = U and Y0.i = Yi. By these definitions, we can observe that Y,J is subaaifitive 
in the sense (see figure 6@)) 

YO,? < Y0.j + 5.i for 0 < j < i . (3.14) 

and ( - j ,  Yj) &+(-i, Y)} - Y. J 

x 
, 

Figure 6. (U )  The contour of the edge process in figure Xu) is shown in the (X. Y) plane. 
Following (3.11) and (3.12). the points Pf = (4. Yi),  i = 0,1,2. .  . . are determined as shown 
for this realization. (6) Since the point (4, Y0.j +Yj,i) is defined in the region U ( j ) ,  its ordinate 
is q u a l  to or greater than Y0.i. 
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We also find that -n < E[YJ < 00 for any n unless p = 1. We can show that the 
subadditive ergodic theorem (see p 277 in Liggett 1985) is applicable to Yj.i and have the 
following lemma. 

Lemma 3.1. Let 
Yn = ay.1. (3.15) 

Then 

(3.16) Yn Y" 3 y  = lim - = inf- E [-1.00) 
n-m n n>,l n 

and 
Y" Y, = lim - exists almost surely with - 1 < Ym < 00 (3.17) 

n-m n 
with 

E[YmI = Y: 
By using  this^ lemma, we can give a definition of $. 

Definition 3.2. 

,t($ - f) = y . 

The criterion (3.4) is rewritten as follows: 
y =- 1 survival 
y i 1 extinction. 

(3.18) 

(3.19) 

(3.20) 

Remark 3.3. In this paper we consider the diode-resistor krcolation on a half plane (3.7), 
since we concentrate on the asymptotic behaviour of edge processes for characterizing the 

 critical values. On the other hand, Wierman (1983) studied the model on a whole plane and 
proved the well-definiteness of the wedge angle B which is just the twice of $. 

4. Approximate processes and lower bounds for p&) 

4.1. Approximate procedure 

Let L. &'the translation operator which shifts a region to the left by n columns. By the 
definition (3.9), we see 

' L  

B-. = ~ + - l ) B - i  n = 2 , 3 , 4  ,.... (4.1) 
We find that the sequence {Yn]n=~.l,z.... can be given successively as follows: 

!<. .. ,, Yo = 0 ~~ 

Yn+l = min(Y : Y > -(n + 1) and (-n, Y.) L"B.,rlV 5 (-(n + l), Y ) ]  (4.2) 

n = 0 , 1 , 2  , .___  
The sequence {Yn]n~.l.l.... can be regarded as a process, but it is not a Markov process. 

Dhar (1982) proposed a method to approximate this non-Markov process. His strategy 
is to introduce an approximate process (Y,"] which is defined successively in a similar way 
to (4.2), but for which the set B-1 is replaced by its subset 

C C 8-1. (4.3) 
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By this definition, we have 

since the percolation paths which we can consider are more restricted. As for Y,, we can 
define the limit 

M Katori and H Tsukahnra 

Y:>Yn n=O,1,2 ,... (4.4) 

(4.5) 

and it follows that 

Y C 2 Y .  (4.6) 
In order to calculate yc, we consider another process (F:), which is defined as follows: 

It should be noted that in this definition the reshiction for the paths so that they are in the 
region U is omitted and thus 

(4.8) 
-= d ' C  (?SI - Y, 1 = (Y,,,, - F:+J for any k 2 1. 

Therefore we can define a random variable Wc which equals (F:+l - F:] in distribution 
and 

If we write the maximum of the values a and b as a v b, we can conclude that the limit 
(4.5) is given by 

yc = EIWCIY -1. (4.10) 
Combining the above observation and the criterion (3.20) gives the following useful lemma. 

Lemma 4.1. 

E[w'] c 1 ==+ extinction. 
- 
(4.11) 

4.2. Calculation 

In this subsection we show an outline of the calculation of E[Wc] for the choice 
C = uo U h-I U U-, (4.12) 

Or 

r-_,C=u,Uh_(,+l)Uu-("+,, n=0,1,2 ,.... (4.13) 
The derails will be given in the appendix. 

Assume that F ,  is obtained as the ordinate of the Iowest point in the column X = -n 
such that there is a path from the point (-(n - l), F;-l) in the set of bonds r-c,,-,)C. Let 

(4.14) 

Then by the definition (4.7) with (4.13), we find 
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(4.17) 

(4.18) 

(4.19) 

See figure I, for example. 
By definition r. and s, are determined by the bond configuration on vqn+1) U h++l) 

and are thus independent of ( ( r y , s k .  t+) : k < n - l}. In some cases, however, t,, depends 
not only on r. and s. but also on r,-l and ~ " - 1 .  We consider the distribution function of 
the set of random variables (rn,sn, tn, rn-l, &-I), which we simply Write as 

(4.20) - -  
P ( r , s , t , f , S )  =Prob((r,,s,,t,,r.-l,s.-~) = ( r , s , t , r , s ) )  

for 0 < r, s, r, i ,  S c W. The expectation of the function of (rn, s,, tn)  is defined as 

and we obtain 

E[WC] = E[rJ - E[sJ - E [ & ] :  (4.22) 

The distribution (4.20) is rewritten as follows by using the appropriate conditional 
probabilities 

P(r, s, t , i ,  3) = P(tlr,  s, i , I ) P ( r ,  slf,S)P(F, ?) 

= P(tlr,  s, i ,  S)P(r, s ) P ( f ,  3) (4.23) 

where P(olIq.,) denotes the conditional probability of o1 given q.. 

Figure 7. An example of the bond configuration on U-" U h-(.+l) U 
u - ( ~ + I ) .  where thin bonds are either resiston or diodes. By definition, 
the vertical bonds just below p:. pz, and ?:+, should be diodes. 
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It is easy to obtain 

P ( 1  - P - 2q)q"-'(p + 4Y-I if r 2 s > l  I (1 - P - 24XP +4)471 - (P + 4 ) Y r - I  if s > r > O .  
P(r, s) = 4 ( p  + 4)' if r 2 0,s = O  (4.24) 

Therefore the first two terms of the RHS of (4.22) are given as 

and 

(4.26) 

For the conditional probability P(tlr, s, 7, S) we observe the following facts. (i) If 
r > s, P(tlr,  s, 7, S) = &,o. The reason is that all the horizontal bonds on h++]) whose 
ordinates are between ?zl and f'z are diodes for this case and the vertical bond just below 

is a diode by definition. (ii) If r, 2 s, and Fn < Sn, or ifs, - r. > in - S, > 0, we 
have Fz1 < pF and Fz1 < F:-,. Therefore P(tlr, s, f ,  S) is independent of r, s, f ,  S and 
given by a function of t ,  which we write fr. (iii) If in - Sn s,, - r. > 0, Fiy, < pz 
but Y,+, 2 Y%-,, since Y,+, - YL, = (in - S,) - (s. - r,,). In this case P ( t [ r , s ,  i, 5 )  is a 
function of t and (i - 5 )  - (s - r )  and we Write P(tlr, s, i ,  S) = g(t, (i - S) - (s - r)) .  By 
this observation, we obtain (see appendix A.l for details) 

E [ t . l = ( P ( r  i s ) 2 + P ( s - r s 7 - 3 p O ) } [ t ] f  + P ( i - J > s - r > O ) ( [ t ] , )  (4.27) 

where 

- (2 )  -c -0) - 

and 

with 

It is easy to obtain the following probabilities from (4.23) and (4.24): 

~ ( r  c s)'+ p(s  - r > i -5 3 0) 

and 

(4.28) 

(4.29) 

(4.30) 
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Appendices A.2 and A.3 are devoted to derive the following results: 

and 

with 
w(q) = 2 4 7  - 3q6 - q 5 + Z q 4 -  2q3 + q 2  + q  - 1 
al(q) = q(7q5 - 9q4 - 5q3 + 5q2 - 1) 
u2(q) = 9q5 - 1 0 ~ 4  - tiq3 + 4q2 + - 1 
a&) = q(5q3 - 5q2 - 2q + 1) 

= 4% - 1). 

Substituting (4.31x4.34) for (4.27) gives E[&].  

4.3. Lower boundfor p.(q) 

We obtain the following lower bound for the critical line p = pc(q)  on the ( p ,  q)-plane. 

Proposition 4.2. Let 

E[w'] = E[r,]  - E[s,]  - E[t , ] .  .~ . (4.35) 

Define for~0 < q < 4, 
p ~ ( q )  =  SUP[^ : 0 < p < 1 - 2q and E[W'] < 1 1 .  (4.36) 

Then 
a(q) < pc(q )  for 0 < < 4. (4.37) 

Figure S. ?he line denotes the Iowa bound p = a(q) 
0 0.1 0.2 0.3 0.4 0.5 ~ given by proposition 4.2. The cr i t ical  line p = p d q )  

should exist above this line. 

0 " " " "  ' " " " " " ~ '  

q 
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In other words, for 0 Q q Q A ,  if 0 < p c f i ( q ) ,  then both of the processes e!'' and $- 
become extinct with probability one. 

M Katori and H Tsukahara 

Figure 8 shows the numerical values of the lower hound p = p&). 

5. Phase diagram on the (PI, p&plane 

5.1. Lower bound for the critical line 

The lower bound for p = p&) given by proposition 4.2 is mapped to the bound for the 
critical line in the (PI, pz)-plane by (2.6). We give here the rather lengthy but explicit 
expression of the result. 

Theorem 5.1. Let 

CL(P1. PZ) = 11 - P I h  - Pl)IU - (P2 -PI)) 
x[ l  - 11 - (2Pl - Pz)h - (PZ - P1)2(1 -~Pl)l &(PI. Pz) 
+IPZ - Pl(2 - Pl)lP:(Pz - W l  - M P l >  PZ) (5.1) 

with 
&(pi, Pz) = 2Pf - (Pz 4- z )P:  - (P: - 2P2 - 2)P: 4- (3P: - 3Pz - 1)P: 

-4Pz(Pz - 1)P: (3P2 - l)(Pz - 1)Pl - ( P 2  - 1)' 
~z(p1 ,  PZ) = (PZ + 1 ) ~ :  - ( 3 ~ :  + ~ P Z  - DP: + P:WJZ + 4 ) 4  (5.2) 

+ 3p; + 4PZ - Pz - 2)P: + (P; + 4P; - P: - 2PZ + 1)Pi' 
-(pz - l)(P: + P: + 2P2 + QPl + (Pz + 1)(n - 1Y. 

In'the parameter region where 

O Q P l $ 1  0 < PZ < 1 PI < PZ < 2Pl (5.3) 
and 

(5.4) 

(5.5) 

This implies that the process q: starting from any initial state A dies out with probability 
one. 

In figures 9(a) and (b), we show the line C ~ ( p 1 ,  p z )  = 0 in the region (5.3). Theorem 
5.1 says that the region to the left of this line is completely included in the extinction 
phase and that the critical line separating this phase and the survival phase should lie to 
the right of this line. It should be noted that in the regions p z  > 2p1 and pz c PI the 
percolation substructure explained in section 2 loses its meaning, since p = 2pl - pz c 0 
and q = p z  - p1 e 0, respectively, by the relation (2.6). 

5.2. Upper bound for the critical line by Liggett 

Recently Liggett (1994) proved the following remarkable result. 

Theorem 5.2 (Liggett). In the parameter region where 
1 i Q P 1 < 1  P l < P Z < l  

CU(PI. PZ) = PZ - 4 ~ 1 ( 1  - PI) > 0 
and 
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Figure 9. (0)  The full c w e  is the lower bound pl  = p a ( p z )  for the critical line given by 
theorem 5.1. The dotted line is the upper bound given by Liggeu (theorem 5.2). The critical 
values estimared by the Monte Carlo simulation are marked by 0’s. (b) An enlarged figure. 
Rigorous bounds for the critical line are summarid  (1) the lower bound given by theorem 
5.1. (2) the s i m p a d  lower bound given by theorem 5.7, and (3) Liggen’s upper bound given 
by theorem 5.2. 0.5 denote the estimated critical values by the Monte Carlo simulation. The 
point marked by A (ESP. v) denotes the value e, (resp. p.) evaluated by Onndy and Neves 
(1992) (resp. Bater and Guttmann 1988). 

P ( ~ F  + o for all t > 0) > o (5.8) 

that is, the process survives with a positive probability. 

We also show in figure 9 the line Cu(p1, a) = 0 in the region (5.6). The proof of 
theorem 5.2 is based on the method called the Holley-Liggett argument. This argument 
was first applied by Holley and Liggett (1978) to the basic contact process, which can 
be regarded as the continuous-time version of the bond-directed percolation model. After 
that this technique has been extended by Liggett (IWIa, 1991b) and by Katori and Konno 
(1993) for the modified and the generalized contact processes. Liggett (1995) also reported 
the improvement of the Holley-Liggett result for the basic contact process. Liggett’s new 
result (1994) first showed that this method is also applicable to discrete-time processes. 

Theorems 5.1 and 5.2 imply that the true critical line exists between the two lines 
CL(p1. p2) = 0 and Cu(p1, pz) = 0 in the region (5.3). Let pt = pl,(pz) denote the 
critical line and 

(5.9) 

(5.10) 

p i d p z )  = - s ~ P { P ~  : $PZ 4 P I  < PZ and C d p i ,  P Z )  < 0 )  

p l d p z )  = S(PI : i p 2  < P I  4 pz and C U ( P I ,  p z )  > 01 . 
Then we have the following result. 

Theorem 5.3. There exists a critical line p1 = pl,(pz) in the region (5.3) and 

(5.11) 
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5.3. Special cases 

Bond-directed percolation with bond concentration B. 
CL@,, p z )  may be factorized as 

M Katori and H Tshhara 

If we put p ,  and pz (2.9). 

cL(p, P ( Z  - 8) )  = v2 - p + 1)(p3 - p2 + 1)(p5 - 3p4 + 4p3 - p 2  -9 + 1) 

X (-p8 + 88’ - 22P6 + 36p5 - 37p4 + Up3 - 14p2 + 58 - 1). (5.12) 
Let 
CPd(p)  = -p8 + 88’ - 22p6 4- 36p5 - 37p4 + 27p3 - 14pz + 58 - 1 (5.13) 
and 

= sup(fi: Cp”dp) i 0). (5.14) 
Then 

BL = 0.626 121 . . . and a < pc (5.15) 
for the critical value pc of the bond-directed percolation. This lower bound was reported in 
Dhar (1982) as the result of his second strategy. The most reliable value estimated so far is 

Bc =O.6447O1&Oo.000(rO1 (5.16) 
given by Baxter and Guttmann (1988). Liggett’s upper bound (theorem 5.2) gives for this 
case 

A < $ .  (5.17) 
Site-directed percolation with site concentration CY. If we set the parameters as (2.8). we 
have . 
Csirr CY 
L ( 1 = CL(%E) 

= CY9 - 4 d  + loa7 - i 6 d  + 2iCY5 - 2oe4 + isar3 - 9 2  + 40 - 1.  
It gives the lower bound for the critical value ciC of site-directed percolation, 

(5.18) 

CYL < arc 

with 

CfL = supjlr : CY(ly) c 0) 
= 0.688547.. . . 

(5.19) 

(5.20) 
This lower bound for cyc is new one and slightly better than the bound by Gray et al (1980). 
The most reliable value of cu, estimated so far is 

(5.21) aC = 0.705 489 & 0.000 004 
given by Onody and Neves (1992). Liggett’s upper bound gives for this case 

C Y c < $ .  (5.22) 
The limir pz -+ 1 and its vicinig. It should be remarked that 

lim CL(P~, p z )  = P:(P: - P I +  1)3(2~1 - 1) 
P7-1 

(5.23) 

and 

hn CU(P1, PZ) = @PI - 
P i + l  

Therefore we have the following corollary of theorem 5.3. 

(5.24) 
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Corollary 5.4. 
1 lim P & J ~ )  = i 

B-1 

The next question is the convergence rate of to $ as pz  + 1. Durrett (1988) 
proposed the following conjecture. 

Conjecture 5.5 (Durrett). Assume that 0 < 1 - pz << 1. Then there exists an exponent 0 
such that 

(5.26) 

where 2: means that if the constant C is taken to be sufficiently large (resp. small) the RHS 
gives the upper (resp.. lower) bound of the LHS. 

Since we observe for 0 < 1 - pz  << 1, 

P l C ( P 2 )  - 7 1 2: C(1 - P d B  

PIL(P2) - ~ +  = S ( 1  - P 2 )  + OK1 - P 2 P )  (5.27) 
and 

PlU(P2) - 4 = +( l  - PZ)’” (5.28) 
we obtain the following result. 

Corollary 5.6. If conjecture 5.5 is correct, then 

$ < e < i .  .~ (5.29) 

5.4. Simpl@ed version 

The function CL(p1,pz) which gives the lower bound for the critical ,line is rather 
complicated. The reason is that EItJ is lengthy. By definition, E[t,,] > 0 and thus 
we have 

EIWcl < E[rJ - E M .  (5.30) 

Therefore if E[rJ - E[sJ < 1,  then E[Wc] < 1 and it follows lemma 4.1 that the process 
becomes extinct. This observation leads a slightly worse, but much more simply expressed 
lower bound for the critical line p1 = plC(pz) .  

Theorem 5.7. Let 

(5.31) 

and 

(5.33) 
It should be remarked that for bond-directed percolation this simplified version gives 

bL < pc with BL = (-1+6)/2 = 0.618033.. . , and for site-duected percolation, 6~ 6 aC 
withG~,= ( $ - ~ / 1 8 ] ’ ~ 3 + ( $ + ~ / 1 8 ] L ~ 3  = 0.682327 ... asspecial~cases. The former 
bound )L is the s h e  as the value reported in Dhar (1982) as the result of his first strategy. 
This simplified lower bound is also shown in figure 9(b). 
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0.65 
0.6 0.65 0.7 0.75 a8 0.85 0.9 0.W 1 

P 

Figure 10. Bounds foi the critical line of the mixed 
sitebond directed percolation: (1) the lower bound 
given by theorem 5.1, (2) the simplified lower bound 
given by theorem 5.7, and (3) Liggen’s upper bound 
given by theorem 5.2. The critical values estimated 
by the Monte Carlo simulation are denoted by 0’s. 
The point marked by A (resp. v) denotes the value 
a, (resp. pc)  evaluated by Onody and Neves (1992) 
(resp. Baxter and G u n ”  1988). 

5.8. Computer simulation 

We have performed the Monte Carlo simulation for the present process rlr. The estimated 
critical values are plotted in fiwes 9(a) and (b) .  These results fall between our lower bound 
and the upper bound of Liggitt as expected.‘ More details will be reported in Tretyakov et 
a1 (1995). 

5.6. .Mixed site-bond directed percolation 

If we parameterize P I  and pz as (2.10), the present process is identified with the mixed 
site-bond directed percolation with site concentration and bond concentration B .  We 
can consider the (or, ,6) phase diagram on which there exists a critical line between the 
percolation phase and the non-percolation phase. We show the numerical values of the 
lower bound given by theorem 5.1 in figure 10. The simplified version, theorem 5.7, gives 
the line 

,384 - ffpz + zorg = 1 (5.34) 

which also gives the lower bound. We show this line as well as the upper bound of Liggett in 
figure 10. Quite recently, Tretyakov and Inui (1995) reported a precise study by simulations. 
They have compared their results with our lower bound (5.34). 

8.7. Remarks on future problems 

In the present paper, we have reported rigorous results on the phase d iag”  of two- 
neighbour SCA. Both our theorem and Liggett’s theorem are based on the attractiveness 
of the processes; the bounds are only valid for the parameter region p~ > P I .  We find, 
however, that by comparing with the simulation results the line p1 = p l ~ ( p 2 )  seems to give 
a good ‘lower bound’ for the true critical line even for the region pz  < p , ,  which will be 
reported in the forthcoming paper (lketyakov etal 1995). 

The two-neighbour SCA can be remded as the discretetime version of the generalized 
contact process which has a parameter B and we simply call it the &contact process. For 
1 < 0 < 2 rigorous lower and upper bounds have been given (Katori and Konno 1993) and 
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then the lower bound was extended for -9 > 2 (Katori 1994), but we have had no rigorous 
bounds for the non-attractive cases, 0 < 0 < 1. Jensen and Dickman (1994) extensively 
studied the @-contact process by the series expansion method and showed that the line 
given by Katori and Konno (1993) seems to bound the critical l i e  estimated by them also 
in the region 0 < @ < 1. Further study of non-attractive systems are required both for 
continuous-time processes and SCA. 

Giving the precise definition of the angle @, we have clarified the foundation of Dhar’s 
method and extended his results. In order to obtain lower bounds for critical values, we 
introduced approximate processes by making the appropriate restriction for the paths on the 
spatio-temporal plane; we replace the set B-1 by its subset C as explained in subsection 4.1. 
In this paper we have chosen the set C as a strip consisting of two successive columns and 
the horizontal bonds between them. It should be remarked again that even though C is 
a rather narrow region, the difference between ow lower hounds and the critical values 
estimated by series expansion methods or simulations is only a few per cent. It can be 
proved that if we enlarge the set C and let C + B-1, the obtained lower bounds converge 
to the true values (Wierman 1983). The present results imply that the convergence of 
Dhar’s method is  excellent in comparison with other methods giving lower bounds (see 
Konno 1994). Applications of Dhar’s method to the percolation models on a triangular 
lattice will be reported elsewhere (Tsukahara and Katori 1995). 

As explained in section 3, Dhar’s method can be regarded as a kind of contour method. 
One of the remarkable features of Dhar’s method is that the overhang structures of the 
contour can be taken into account effectively and systematically. Application of Dhar’s 
method to the continuous-time interacting particle systems may be an important problem in 
the future. 
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Appendix 

Appendix A.l .  Derivation’of (4.27) 

The indicator function 1 ~ 1  is defined as 
otherwise. By equations (4.21), (4.23) and the facts mentioned above (4.27), we have 

= 1 if the event o occurs and = 0 
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Let Si be the last term in the RHS of the second equality in (A.1). Then 

m m  m m  

= c P(r,  (Y + r )  P(0r + J + k ,  S)H(h)  . 
r=O ol=1 j=O h=O 

Since P(r,  s) is given as (4.24). we find that 
m 

~ : P ( ( Y  +B+ h , i ) H U z )  = P(= + S . i ) c ( p  +q)"H(k) 
h=O h=O 

= 2 P(i,S, (H) 
?=U+: 

(A.4) 

where we have used the notation (4.29). By equations (A.3)-(A.5) and using the notation 
(4.30), we have 

The equation (4.27) follows (A.l) with (A.6). 

Appendix A.2. Derivation of (4.33) 

It is easy to obtain the following equation for fi with t 
of Dhar's equation for the bond-directed percolation (see equation (AS) in Dhar 1982). 

1, which is a simple generalization 
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for t 2 1. When t = 0, we have 
m 

f o = C ( ~ + q ) [ ( P + q ) 1 ~ - ( p + q ) j ~ '  

- - P + 4  . 
1 - (P + 4)U - (P + 4)l. 

a'=O 

Following Dhar (1982), we introduce the generating function of fr  as 

t=O 

and (A.7) is solved as follows: 
f o  

1 - W ( x )  
F ( x )  = 

with 

m 

F ( l ) = X A = l  
1=0 

The result (4.33) is obtained by the formula 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

Appendix A.3. Derivation of (4.34) 

It is straightforward to obtain the following equations for g( t ,  h): 

(A.13) 
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(A.14) 

.. - . .  
for h >-l (A.15) 

and 

(A.16) 

(A.17) 

In order to solve these equations, here we introduce two kinds of generating functions 
for g(t ,  h). The first one is 

(A.18) 

and the second one is 
m 

&x, p + q)  = c(p + qPG(x, h ) .  (A.19) 
h=O 

Then we have the equation in the following form: 

A ( p ,  q)@, p +q)  = B ( p ,  q ) W ,  0) + C(P,  4 )  + D(P,  q ) F ( x ) .  
It is easy to see that 

(A.20) 

(A.21) 

The coefficients A(p, q) ,  B ( p ,  q) ,  C ( p ,  q)  and D ( p ,  q)  are functions of p and q. Since 
they are rather lengthy, we omit them here. The result (4.34) is derived by the formula. 

(A.22) 
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